Holmes_Factors (Problem 1)

Reading: Holmes.Intro
Model: Source Text

Problem Type: Offsets, linear predictors, and rating tables

Given An actua

An actuary is building a basic homeowners pure premium GLM using the following variables:

Age of Home which takes integer values between 0 and 10 (inclusive) but is modeled as a continuous variable.

NoFireExtinguisherInd which is 1 if **no** fire extinguisher is present in the home and 0 otherwise. The base level for NoFireExtinguisherInd is 0 (more homes have a fire extinguisher than do not).

The actuary is using a Tweedie distribution with the log link function.

The results of their GLM are shown below.

	Estimate
(Intercept)	4.605
Age of Home	0.010
NoFireExtinguisherInd:1	0.182

You may assume all variables are statistically significant and should be included in the model.

The actuary has performed a separate loss elimination ratio analysis to price their deductible offerings:

	Discount /
Deductible	Surcharge
\$500	15%
\$1,000	0%
\$2,000	-10%

Find

- a.) What is the value of the linear predictor for a home that is 2 years old without a fire extinguisher and having a \$500 deductible?
- b.) Construct rating tables for the Age of Home and NoFireExtinguisherInd rating variables.
- c.) Briefly describe two potential weaknesses of the actuary's GLM in relation to the *Age of Home* rating variable.

a.) First we should translate the deductible discount/surcharge into a table of relativities and then adjust them to match the scale of the GLM.

Scale of the GLIVI.				
		Offset		
Deductible	Relativity	In(Rel)		
\$500	1.150	0.1398		
\$1,000	1.000	0.0000		
\$2,000	0.900	-0.1054		

 $\text{Linear predictor} \qquad g(\mu_i) = \beta_0 + \beta_1 \cdot Age \ of \ Home_i + \beta_2 \cdot NoFireExtinguisherInd_i + Offset_i$

$$\beta_0 = 4.605$$
 $\beta_1 = 0.010$
 $\beta_2 = 0.182$

$$g(\mu_i)$$
 = 4.9468 = 4.605 + 0.010 * 2 + 0.182 * 1 + 0.1398

b.) The inverse of the log link function, $ln(\mu)$, is $exp(\mu)$.

$$\begin{split} \mu_i &= \exp(\beta_0 + \beta_1 \cdot Age \ of \ Home_i + \beta_2 \cdot NoFireExtinguisherInd_i + Offset_i) \\ &= e^{\beta_0} \cdot \left(e^{\beta_1}\right)^{Age \ of \ Home_i} \cdot \left(e^{\beta_2}\right)^{NoFireExtinguisherInd_i} \cdot e^{Offset_i} \end{split}$$

The multiplicative relativities for Age of <u>Home</u> and *Fire Extinguishers* are then

The manipheative relativitie		
Age of Home	Relativity	
0	1.000	
1	1.010	
2	1.020	
3	1.030	
4	1.041	
5	1.051	
6	1.062	
7	1.073	
8	1.083	
9	1.094	
10	1.105	

Fire	
Extinguisher	Relativity
Yes	1.000
No	1.200

- c.) Two potential weaknesses are:
 - Age of Home was not logged so it doesn't match the scale of the link function. This is why we end up with Age of Home as a power rather than a direct multiplication.
 - Age of Home only takes discrete integer values yet is modeled as a continuous variable via a first-order polynomial.
 It may be better to treat it as a categorical variable and possibly group some of the ages.